
Overlapping Decomposition for Causal Graphical Modeling

Lei Han†, Guojie Song†∗, Gao Cong‡, Kunqing Xie†

†Key Laboratory of Machine Perception (Ministry of Education), EECS, Peking University, China
{hanlei, gjsong, xkq}@cis.pku.edu.cn

‡School of Computer Engineering, Nanyang Technological University, Singapore
gaocong@ntu.edu.sg

ABSTRACT

Causal graphical models are developed to detect the dependence
relationships between random variables and provide intuitive ex-
planations for the relationships in complex systems. Most of ex-
isting work focuses on learning a single graphical model for all
the variables. However, a single graphical model cannot accurate-
ly characterize the complicated causal relationships for a relatively
large graph. In this paper, we propose the problem of estimating
an overlapping decomposition for Gaussian graphical models of a
large scale to generate overlapping sub-graphical models. Specif-
ically, we formulate an objective function for the overlapping de-
composition problem and propose an approximate algorithm for it.
A key theory of the algorithm is that the problem of solving a k+1
node graphical model can be reduced to the problem of solving a
one-step regularization based on a solved k node graphical model.
Based on this theory, a greedy expansion algorithm is proposed to
generate the overlapping subgraphs. We evaluate the effectiveness
of our model on both synthetic datasets and real traffic dataset, and
the experimental results show the superiority of our method.

Categories and Subject Descriptors

G.3 [Mathematics of Computing]: Probability and Statistics

Keywords

Causality, Graphical Model, Overlapping Decomposition

1. INTRODUCTION
Causal graphical models are established to meaningfully charac-

terize causal or statistical relationships that exist among variables
of interest and quantify them. The problem of characterizing the
causal relationships between variables in complex systems, such
as economics, biological systems, traffic systems, climate change,
etc., is important and fundamental. For example, economists wan-
t to know whether burning natural gas is a causal factor for the
global warming.

∗Corresponding author. Email: gjsong@cis.pku.edu.cn

The Gaussian graphical model [7], which learns the causalities
between variables through their covariance, is one of the most promis-
ing causal modeling methods. It has been successfully employed
in many applications, such as mining the causalities of climate at-
tributes [2], gene regulatory network discovery [5], etc. In addi-
tion, several causal models on temporal evolving graphs have been
proposed with applications in cross-species gene expression anal-
ysis [11], oil-production equipment stage capture [10] and climate
research [12].

These methods construct a single graphical model to capture all
the causalities between variables, treating all the variables together.
They are typically developed for a small number of variables (usu-
ally in the order of tens). We will discuss theoretically in Section
4.2 that learning causalities through a single Gaussian graphical
model by the variable covariance will be inaccurate, when large
number of variables are considered and small number of observa-
tions are available. As a matter of fact, a causality model with
only 20 variables can be overwhelming and difficult to interpret at
a global level [1, 15]. Worse still, it is much more challenging to
understand and construct causal relationships using causal graphi-
cal models for a relatively large graph (e.g., with hundreds of vari-
ables), although many applications need to deal with large graph-
s with heterogenous and complicated relationships. For instance,
a highway network in traffic systems often contains hundreds of
sample nodes, whose observations are counts of passing vehicles
collected by sensors. In such traffic networks, complicated causal-
ities exist between the vehicle counts.

Therefore, it is essential to develop techniques to discover such
causalities in a large network. To cope with the challenging prob-
lem, we propose to decompose a large graphical model into multi-
ple overlapping sub-graphical models. For decomposing a graph-
ical model, it is important to consider both the heterogeneity and
homogeneity, where heterogeneity means the local causalities and
homogeneity refers to the overlaps between sub-graphical model-
s. For example in traffic systems, some crucial traffic nodes may
highly correlate with several different local regions, and thus these
important nodes should be considered as overlap (homogeneity) by
these local regions; meanwhile, we also need to find the causalities
within a region (heterogeneity).

Unfortunately, decomposing graphical models is NP-hard [15]
even if overlaps are not allowed. When we allow overlaps, the de-
composition problem becomes more challenging because the search
space becomes larger, which is due to more combinations of sub-
graph structures than those in the non-overlapping case.

In this paper, we address the challenging problem of estimating
an overlapping decomposition for Gaussian graphical models of a
large scale. We propose a novel approximation algorithm with per-
formance guarantee, which is based on a local subgraph expansion
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strategy. Specifically, we first formulate the optimization problem
with an objective function comprising the negative log-likelihood
of the observations of Gaussian sub-graphical models and some
penalized items to constrain the structure of the subgraphs. Un-
fortunately, the penalized log-likelihood methods [4, 19] in Gaus-
sian graphical model cannot be used to solve the approximation
problem. Instead, we propose an algorithm that starts with the ini-
tial small subgraphs and incrementally computes the new Gaussian
graphical model when a new node is involved.

One key technique is that we prove that the problem of solving
a k + 1 node graphical model can be reduced to the problem of
solving a one-step regularization based on a solved k node graphi-
cal model, referred to as additive expanding property. We study the
correctness and accuracy of this technique with detailed analysis.
Based on the technique, we propose a greedy expansion algorithm
for generating the overlapping sub-graphical models.

We evaluate the proposed method with two sets of experiments:
First we empirically verify the properties of the proposed overlap-
ping decomposition method on synthetic networks, and compare
with the single graphical model [4,19] and the non-overlapping de-
composition method (which is a special case of the proposed over-
lapping decomposition method). The experimental results demon-
strate the advantages of our techniques. Second, we evaluate the
proposed techniques on real-life traffic data by learning the causal-
ities between traffic observation points (e.g., a on-ramp) and detect-
ing the traffic regularity in large traffic networks, which is essential
for traffic analysis.

In summary, our main contributions are four-fold:

1. We formulate an objective function for the problem of over-
lapping decomposition of graphical model, and reduce the
problem to a local subgraph expansion problem.

2. We extend the penalized log-likelihood in Gaussian graphical
model to satisfy an additive expanding property and demon-
strate its correctness and accuracy with detailed asymptotic
analysis.

3. We propose a constrained greedy subgraph expansion algo-
rithm for generating the overlapping subgraphs.

4. We evaluate our method on both synthetic and real-life traffic
data. Experimental results show the effectiveness and supe-
riority of our overlapping decomposition theory.

The rest of this paper is organized as follows. In Section 2, we
briefly review closely related work. Section 3 presents the prelim-
inaries and the problem statement. In Section 4, we present the
proposed method including two core techniques and a demonstra-
tion. Experimental studies are reported in Section 5. We conclude
this paper and present future directions in Section 6.

2. RELATED WORK
Most of existing work on causal graphical models builds a single

graphical model. This renders them impractical to relatively large
graphs (with more than hundreds of nodes). To cope with larg-
er set of time series variables, Ruan et al. [15] propose to cluster
time series variables into groups such that strong causal relations
appear only between time series within a group while the causal re-
lation between inter-group variables is weak. The clustering prob-
lem is formulated as a regression coefficient sparsification problem
for graphical model decomposition. However, the approach [15]
only considers non-overlapping decompositions while ignoring the
overlap between subgraphs, which exists in many real-world appli-
cations. Moreover, the approach [15] is developed for time series

variables, and is based on the Vector Autoregressive model, a type
of temporal graphical model, rather than Gaussian graphical model
as we use.

Our work is closely related to the joint estimation methods for
multiple graphical models that share common structures [3,6]. The
joint estimation methods [3,6] are proposed to learn multiple graph-
ical models on the data from different categories but with the same
set of features (variables), considering both the underlying homo-
geneity and heterogeneity of networks. They estimate multiple
graphical models for different categories of the features, but not
decomposing the features themselves. We proceed to use the ex-
ample application scenario [3] to illustrate these methods. Con-
sider a set of webpages collected from computer science depart-
ments of universities, and we want to find the causalities between
selected keywords (e.g., "book", "model", "problem", etc.) appear-
ing in the collection. These keywords can be treated as features,
and appear in webpages of different categories, such as "studen-
t", "faculty", "project", etc. These features may display different
dependence structures for different categories while sharing some
common causalities across categories. The joint estimation meth-
ods cannot be applied to solve our problem, and they cannot be
employed to discover the complicated causal relationships in large
feature networks. First, these methods do not consider the decom-
position on features of a large graph. Second, these methods are
developed for graphs with a small number of features (in the order
of tens).

Our proposed approach is also related to detecting overlapped
community structures [9]. Community structure detection aims to
group similar nodes together based on known distance measure-
ments of nodes or correlations among nodes themselves. In con-
trast, in our problem we aim to uncover the causalities among cor-
related nodes, and furthermore find subgraphs based on the discov-
ered causalities but not the known properties of nodes themselves.
Thus, our problem is essentially different from community struc-
ture detection.

3. PRELIMINARY AND PROBLEM STATE-

MENT

3.1 Preliminary: Gaussian graphical model
As a member of the causal graphical model, Gaussian graph-

ical model(GGM) assumes the joint distribution of the variables
to be Gaussian. In GGM, the dependence structure (or causali-
ty) is determined from the covariance matrix of the variables, and
a natural way to evaluate the causalities is to estimate the inverse
of the covariance matrix [7, 8, 18]. Consider p random variables
X = (x1, ...,xp), each variable xi having n observations xi =
(x1

i , ..., x
n
i )

T , where we usually have n ≫ p. Without loss of
generality, we assume X follows a multivariate Gaussian distri-
bution N(µ,Σ), where the mean vector µ is p-dimensional and
each element in covariance matrix Σ is the expected value Σij =
E[(Xi−µi)(Xj−µj)]. The causality matrix Ω is the inverse of the
covariance matrix, i.e., Ω = Σ−1. There exists a causal relation-
ship between variables xi and xj iff Ωij 6= 0 [7,18]. Therefore, the
key problem is to calculate Ω. The estimation of Ω can be obtained
by minimizing the penalized log-likelihood criterion [4, 19],

Ω̂ = argmin
Ω

tr(Σ̂Ω) − log |Ω|+ λ
∑

i6=j

|θij | (1)

where θij is the element in Ω; Σ̂ is the sample covariance matrix
estimated on input X; | · | and tr(·) are the determinant and the
trace in matrix calculus, respectively; λ is a tuning parameter.
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The part tr(Σ̂Ω) − log |Ω| of Equation 1 corresponds to the
negative log-likelihood of the observations of a Gaussian graphi-
cal model. The part λ

∑
i6=j |θij | is called a ℓ1 penalty, which is to

shrink some of the off-diagonal elements in Ω̂ to zero. The tuning

parameter λ controls the sparsity of Ω̂. This minimization problem
can be solved efficiently by the graphical lasso algorithms proposed
in [4, 19].

3.2 Problem Definition
Problem Definition: Given p random variables X = (x1, ...,xp),
where p is large and each variable xi has n observations, xi =
(x1

i , ..., x
n
i )

T , we aim to learn the causal relationships between
these variables.

In other words, we aim to encode the structure of X with an
undirected graph G = (V,E), where each node v in V = {v1, · · · ,
vp} corresponds to a variable in X . The edge set E indicates the
causalities between any two variables. More precisely, if xi is cor-
related to xj , then edge eij is included in E. Thus, our objective is
to obtain E. As introduced in Section 3.1, E can be constructed by
estimating the causality matrix Ω of X . We add an edge eij to E
iff Ωij 6= 0.

Instead of creating a single Gaussian graphical model for G, we
propose to construct K Gaussian sub-graphical models with over-
laps to discover the causalities between variables. Each subgraph,
corresponding to a Gaussian sub-graphical model, is denoted as
gi = (SVi, SEi), 1 ≤ i ≤ K. The causal relationships reflected
in E, E =

⋃
i SEi, are the output.

The challenge is to generate the K sub-graphical models and
estimate Ωi for each SEi. To achieve this, we proceed to de-
fine a new objective function, which helps to formulate the de-
composition problem clearly. We first introduce some notations:
K vectors {Γ1, · · · ,ΓK}, where each 1 × p vector Γi represents
the component of a subgraph gi. Element γij in Γi is 1 if node
j appears in subgraph gi, and 0 otherwise. In addition, we set∑K

i=1

∑p
j=1 γij ≥ p, because we allow overlaps and we do not

restrict that every node has to be included in at least one subgraph.
This is reasonable because if a node is independent from all others,
it should be left alone.

Objective function: We formulate the overlapping decomposition
for a graphical model into the problem of estimating a set of Ωi by
minimizing

{Ω̂i}Ki=1 = arg min
{Ω1,··· ,ΩK}

K∑

i=1

{tr(Σ̂iΩi)− log |Ωi|}+

λ1

K∑

i=1

∑

j 6=k

|θi,jk|+ λ2

K∑

i=1

‖Γi‖21 + λ3

∑

i<i
′

‖Γi ◦ Γi
′ ‖21,

s.t.
K∑

i=1

‖Γi‖1 ≥ p,

(2)
where θi,jk is the element in Ωi; ‖ · ‖1 is the ℓ1 norm; ◦ means the
Hadamard product; λ1, λ2 and λ3 are tuning parameters.

In Equation 2, tr(Σ̂iΩi) − log |Ωi| represents the negative log-
likelihood of the observations of Gaussian sub-graphic model gi.
The equation includes three penalized items:

• penalty λ1

∑K
i=1

∑
j 6=k |θi,jk| controls the sparsity of the

causalities in each subgraph;

• penalty λ2

∑K
i=1 ‖Γi‖21 is a constraint on the size of each

subgraph and balances them, because the sum of the square
is small when the subgraphs have the similar size;

• penalty λ3

∑
i<i

′ ‖Γi ◦ Γi
′ ‖21 gives a constraint on the sizes

of overlaps and balances the sizes of overlaps, because the
Hadamard product between any two Γi and Γi

′ denotes the
common nodes they share.

Given p random variables X = (x1, ...,xp), and assume X

is encoded with a large graph G, our problem of discovering the
causality structures in G is formulated as finding a set of overlapped
subgraphs based on Equation 2.

Challenge and Solution Overview: The overlapping decomposi-
tion problem is a combinational optimization problem and it is NP-
hard even if the penalty factors are not considered [15] . The prob-
lem involves Kp+Kp2 unknown variables in the worst case, where
{Γ1, · · · ,ΓK} needs Kp variables, and {Ω1, · · · ,ΩK} needs at
most Kp2 variables. Note that {Ω1, · · · ,ΩK} needs fewer vari-
ables if we do not allow overlaps. Such a large number of unknown
variables makes this problem computationally challenging. More-
over, we even do not know how to select a best K for this problem.

Hence, instead of finding the optimal solution to the complicated
function, we propose a novel approximation algorithm for solving
the overlapping decomposition problem, called local subgraph ex-

pansion. Our algorithms adopt a bottom-up strategy that expand
the initial subgraphs by adding selected nodes gradually until the
structure of overlapped subgraphs will reach convergence.

During this process, a key operation is to choose whether to in-
clude a new node in a subgraph. This operation is invoked many
times, and calls for efficient techniques. Specifically, assume that
there is a k-node subgraph whose inner causal relationships have
been detected. We want to know whether a node vk+1 should be
added to it. A straightforward method is creating a new Gaussian
graphical model on all the k + 1 nodes. However, this ignores the
known causal relationships in the k-node subgraph and is compu-
tationally expensive. Thus, a natural question is whether we can
reuse the known causal relationships in a subgraph to detect the
causal relationships between a new node and the subgraph. In the
next section, we present the proposed approximation method with
performance guarantees for the operation.

4. PROPOSED METHOD
In this section, we propose two techniques. The first technique is

generalized by a theorem in Section 4.1. This technique is used to
check whether a new variable (node) should be included in a sub-
graph. The technique extends the penalized log-likelihood criterion
in Equation 1 so that it can be incrementally expanded to accom-
modate new nodes. We call it Additive Penalized Log-likelihood
Expansion (APLE). In Section 4.2, we also show the correctness
and accuracy for APLE, which also motivate the necessity to de-
compose a large graphical model into sub-graphical models from a
theoretical view.

The second technique is a local greedy approach presented in
Section 4.3. We define a fitness function based on APLE approach.
Moreover, taking into account the constraints (penalties in Equa-
tion 2) on the subgraph structures, we develop the Constraint Greedy
Subgraph Expansion (CGSE) algorithm, which can achieve the lo-

cal subgraph expansion process.

4.1 Additive Penalized Log-likelihood Expan-
sion

Suppose that ℓ(Ω(k+1)) is a new penalized log-likelihood crite-
rion computed by Equation 1, which is from adding a new vari-
able xk+1 into a solved penalized log-likelihood criterion ℓ(Ω(k)),
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where

Ω(k+1) =

[
Ω(k) θ

θT θk+1

]

and θ is a k × 1 causality vector between xk+1 and {x1, ..., xk}
which we want to get. Since Ω(k) is already solved (we assume it
is solved by graphical lasso), it is positive definite [4, 19]. Thus,
θk+1 controls whether Ω(k+1) is positive definite, and determines
the k+1 th eigenvalue of Ω(k+1). Also we select θk+1 to guarantee
Ω(k+1) positive definite.

Theorem 1: Suppose Ω̂(k) is a local minimizer of ℓ(Ω(k)), then

there exists a local minimizer of ℓ(Ω(k+1)), Ω̂(k+1), such that Ω̂(k+1)

= (Ω̂(k), θ̂(k)), where θ̂(k) is a local minimizer of

min 2ε̂T θ + ε̂k+1θk+1

−log(θk+1 − θ
T · Σ̂(k) · θ) + 2λθ‖θ‖1

(3)

where (ε̂, ε̂k+1) is the sample covariance vector between xk+1 and
{x1, ..., xk+1}.

Proof : The new penalized log-likelihood criterion ℓ(Ω(k+1)) is

ℓ(Ω(k+1)) = tr(Σ̂(k+1)Ω(k+1))− log |Ω(k+1)|+ λ

k+1∑

i6=j

|θij |

Compactly, we introduce three symbols to denote the items

I
(k+1)
1 = tr(Σ̂(k+1)Ω(k+1))

I
(k+1)
2 = log |Ω(k+1)|

I
(k+1)
3 = λ

∑k+1
i6=j |θij |

We unfold Σ̂(k+1) and Ω(k+1) into block matrices to detect the
relationship between ℓ(Ω(k+1)) and ℓ(Ω(k)). The unfolded matri-
ces are derived as

I
(k+1)
1 = tr(

[
Σ̂(k) ε̂

ε̂T ε̂k+1

]
·
[

Ω(k) θ

θT θk+1

]
)

= tr(

[
Σ̂(k)Ω(k) + ε̂θT Σ̂(k)θ + θk+1ε̂

ε̂TΩ(k) + ε̂k+1θ
T ε̂T θ + ε̂k+1θk+1

]
)

= tr(Σ̂(k)Ω(k)) + tr(ε̂θT ) + ε̂
T
θ + ε̂k+1θk+1

= I
(k)
1 + 2ε̂T θ + ε̂k+1θk+1

I
(k+1)
2 = log

∣∣∣∣
Ω(k) θ

θT θk+1

∣∣∣∣

= log (|Ω(k)| · |θk+1 − θ
T (Ω(k))−1

θ|)
= I

(k)
2 + log (θk+1 − θ

T Σ̂(k)
θ)

I
(k+1)
3 = λ

k+1∑

i6=j

|θij | = I
(k)
3 + 2λ‖θ‖1

where ε̂ and θ are k×1 vectors; the derivation of I
(k+1)
2 is obtained

by Leibniz formula. Finally, we can get

ℓ(Ω(k+1)) = ℓ(Ω(k))+

2ε̂T θ + ε̂k+1θk+1 − log (θk+1 − θ
T Σ̂(k)

θ) + 2λ‖θ‖1 (4)

2

Similarly, we use ℓ(θ(k)) to represent Equation 4, then we have

ℓ(Ω(k+1)) = ℓ(Ω(k)) + ℓ(θ(k)) (5)

Thus, it is understandable that to solve ℓ(Ω(k+1)) based on a

solved ℓ(Ω(k)), we just need to solve ℓ(θ(k)) for an additional
problem. Note that Equation 3 is exactly a ℓ1 regularization prob-
lem which can be solved efficiently using the algorithms in [16,17].

One should be noted that the correctness and accuracy of Ω̂(k+1) =

(Ω̂(k), θ̂(k)) has not been completely guaranteed by the above proof,
because parameter λθ must be selected appropriately to make sure

(Ω̂(k), θ̂(k)) equals the local minimizer Ω̂(k+1). In other words, λθ

has to be adapted corresponding to k as the expansion continues

(until subgraphs converge). Since λθ controls the sparsity of θ̂(k),
if λθ stays unchangeable, when the subgraph expands, constraint

on ‖θ̂k‖1 will become inappropriate which leads to the uncertainty

of Ω̂(k+1) = (Ω̂(k), θ̂(k)).
Thus, a new question raises that how to adapt λθ to make the

evaluation accurate when the subgraph expands. In next subsection,
we will discuss the asymptotic behavior of APLE and show how to
select λθ to ensure the correctness and accuracy of Theorem 1.

4.2 Asymptotic Analysis of APLE
Asymptotic property is crucial for APLE which makes sure that

Ω̂(k+1) can be obtained by Ω̂(k) and θ̂(k) separately under an ap-
propriate λθ . A detailed asymptotic analysis of Equation 1 has been
discussed in [14]. Inspired by it, we establish the analysis to our
APLE approach as follows.

Let the true causality matrix of ℓ(Ω) be Ω0, the true covariance
matrix be Σ0, Ω0 = (Σ0)

−1, as well as true causality vector θ0

and true covariance vector ε0. Let ‖ · ‖F be the Frobenius norm.
We make the following assumptions.

A1: There exists a constant η such that 0 < ϕmax(Ω
(k)
0 ) ≤ η,

where ϕmax(·) denotes the maximum eigenvalue.
A2: There exist constants σ1 and σ2 such that σ1 ≤ θk+1 ≤ σ2

will guarantee Ω(k+1) positive definite and ϕmax(Ω
(k+1)
0 ) ≤ η.

(Note that θk+1 determines the k + 1 th eigenvalue of Ω(k+1)).

Theorem 2: Let θ̂(k) be the local minimizer in Equation 3. Under

A1 and A2, if λθ = C0

√
log k
n

, C0 is a positive constant, then

‖θ̂(k) − θ
(k)
0 ‖F = OP

(√
k log k

n

)
(6)

where OP (·) is the order in probability.

Proof Let G(∆θ) = ℓ(θ0 +∆θ)− ℓ(θ0). Assume that there
exists a bounded convex set

G = {∆θ : ‖∆θ‖F ≤ Mrn},
where M is a positive constant and

rn =

√
k log k

n
→ 0 (n ≫ k)

Note that G(∆θ) is a convex function, if we demonstrate that
G is strictly positive everywhere on the boundary ∂G (‖∆θ‖F =
Mrn), then G has a local minimum inside G. Actually,
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G(∆θ) = ℓ(θ0 +∆θ)− ℓ(θ0)

= 2ε̂T∆θ − (log (θk+1 − (θT
0 +∆θ)Σ̂

(k)(θ0 +∆θ))

− log (θk+1 − θ
T
0 Σ̂

(k)
θ0)) + 2λθ(‖θ0 +∆θ‖1 − ‖θ0‖1)

(7)

For the subtraction of the logarithm terms in Equation 7, assume

that f(θ) = log (θk+1 − θT
Σ̂

(k)θ), we can get from the deriva-

tion in proof of Theorem 1 that f(θ) = I
(k+1)
2 − I

(k)
2 , therefore

f(θ0 +∆θ)− f(θ0) = (log |Ω(k+1)
0 +∆(k+1)| − log |Ω(k+1)

0 |)−
(log |Ω(k)

0 +∆(k)| − log |Ω(k)
0 |)

As has been proved by [14], for Ω0 we have

log |Ω0 +∆| − log |Ω0|

= tr(Σ0∆)− ∆̃T [

∫ 1

0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv]∆̃

where

F = ∆̃T [

∫ 1

0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv]∆̃

≥ 1

4η2
‖∆‖2F

Thus we have

f(θ0 +∆θ)− f(θ0)

= (tr(Σ
(k+1)
0 ∆(k+1))− tr(Σ

(k)
0 ∆(k)))− (F (k+1) − F (k))

≈ 2εT0 ∆θ − (F (k+1) − F (k))

Thus, we get

G(∆θ) = 2(ε̂T − ε
T
0 )∆θ + (F (k+1) − F (k))

+2λθ(‖θ0 +∆θ‖1 − ‖θ0‖1)

For each item in G(∆θ) we have the following boundaries

B1 : |(ε̂T −ε
T
0 )∆θ| ≤ C1

√
log k

n
‖∆θ‖1 ≤ C1

√
k log k

n
‖∆θ‖F

B2 : F (k+1)−F (k) ≥ 1

4η2
(‖∆(k+1)‖2F−‖∆(k)‖2F ) ≥

1

2η2
‖∆θ‖2F

B3 : λθ(‖θ0+∆θ‖1−‖θ0‖1) ≤ λθ‖∆θ‖1 ≤ λθ

√
k‖∆θ‖F

where B1 is a boundary from [14], and B3 can be obtained by mean
inequalities. Combine all the above items and finally we can get

G(∆θ) ≥
1

2η2
‖∆θ‖2F − 2C1

√
k log k

n
‖∆θ‖F − 2λθ

√
k‖∆θ‖F

= ‖∆θ‖2F (
1

2η2
− (2C1

√
k log k

n
+ 2

√
kλθ)‖∆θ‖−1

F )

Take λθ = C0

√
log k
n

,

G(∆θ) ≥ ‖∆θ‖2F (
1

2η2
− 2C1 + 2C0

M
)

for M sufficiently large we can get G(∆θ) > 0.

2

According to the theorem in [3, 14], under certain assumptions,

local minimizer Ω̂(k) of Equation 1 satisfies

‖Ω̂(k) −Ω
(k)
0 ‖F = OP (

√
(k + sk) log k

n
) (8)

where sk is the count of non-zero off-diagonal elements in Ω
(k)
0

(sk = k(k−1)
2

would give a full matrix). For a local minimizer

Ω̂(k+1), we have

‖Ω̂(k+1) − Ω
(k+1)
0 ‖2F ≈ ‖Ω̂(k) − Ω

(k)
0 ‖2F + 2‖θ̂(k) − θ

(k)
0 ‖2F

Thus, combined with our Theorem 2, it can be easily found

OP (
(k + sk) log k

n
) +OP (

2k log k

n
)

≈ OP (
(k + 1 + sk+1) log (k + 1)

n
)

since 0 ≤ sk+1 − sk ≤ 2k.

So, if θ̂(k) is a local minimizer of Equation 3, we know that

there exists a local minimizer Ω̂(k+1) of ℓ(Ω(k+1)) that ensures

Ω̂(k+1) = (Ω̂(k), θ̂(k)). So far, the correctness and accuracy of
Theorem 1 has been guaranteed completely under Theorem 2.

It is worth mentioning that both Equation 8 and our Theorem

2 are in line with the motivation of the decomposition on large s-
cale graphical model. Note that both of them show that when the
number of variables k is relatively large or exceeds the number of
observations n of each variable, the error on the estimation will
increase dramatically.

This suggests that, when we consider only a single graphical
model on a large network, the result will be inaccurate especial-
ly when there are not enough observations to establish such a large
graphical model. An example is that traffic systems often contain
hundreds of ramps (variables), and the number of the observations
for each ramp is limited by the sampling quantity. The periodicity
of traffic behaviors is often measured by days. Thus, if we want to
know the causalities between observations at a specific time period
in a day, we can just get one value for each ramp one day. There-
fore, the decomposition of a large graphical model is necessary.

4.3 Constraint Greedy Subgraph Expansion
We present the algorithm for the local subgraph expansion pro-

cess based on our APLE approach. We consider the constraints cor-
responding to the penalized items in Equation 2, and apply them to
the local subgraph expansion process in this subsection.

Add Constraints: When there is a new node (variable) xnew joint
in a solved k-node subgraph g to do expansion, based on APLE we

can obtain a new causality vector θ̂new = APLE(g, xnew, λθ).

Let Eθ̂ = {i : θ̂i 6= 0, 1 ≤ i ≤ k}, we define the fitness as

Fitness(θ̂new) = e−γo |Eθ̂|
k

(9)

where o is the number of subgraphs to which node vnew has been
mapped, and thus γ controls the degree of overlaps, which can be
regarded as a constraint. With γ, we have that the causality con-
tributions of vnew to other subgraphs reduce as the number of sub-
graphs to which vnew has already been mapped increases.

Because the fitness in Equation 9 is always nonnegative, a thresh-
old ǫf should be given as the minimum accepted fitness, which is
actually a constraint on the size of each subgraph.

After each iteration of expansion, we check whether there are
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near-duplicated subgraphs based on the following equation.

max{ |SVi ∩ SVj |
|SVi|

,
|SVi ∩ SVj |

|SVj |
} > ǫo, (10)

where SVi is the set of edges in subgraph gi and SVj is for gj ; ǫo
is the combination threshold.

We combine subgraphs gi and gj into a new subgraph if the
above equation is satisfied. Here ǫo balances the sizes of overlaps.

Adaption of λθ: It has been mentioned above that as the subgraph
expands, λθ has to be adapted to make APLE correct and accurate.

According to Theorem 2, we know that λ
(k)
θ = C0

√
log k
n

, and thus

when k expands to k + 1, we have

λ
(k+1)
θ = C0

√
log (k + 1)

n
=
√

logk (k + 1)λ
(k)
θ (11)

In the following algorithm we will update λθ based on Equation 11.
The proposed Constraint Greedy Subgraph Expansion(CGSE)

algorithm is outlined in Algorithm 1.

Algorithm 1 CGSE Algorithm

Input: (1)p random variables X = {x1, ..., xp} where xi contains n ob-
servations; (2)K initial seeds S = {S1, ..., SK} where |S1| = ... = |SK|;
Parameters: (1)fitness threshold ǫf ; (2)combination threshold ǫ0; (3)ini-
tial tuning parameter λ0;
Output: Correlations among p variables and the overlapping subgraphs;

1: g = S;
2: K = K;
3: for i = 1 to K do

4: λi = λ0;
5: end for

6: repeat

7: for i = 1 to K do

8: Find an unvisited variable xj from the nodes that are not in sub-
graph gi;

9: k = |gi|;

10: λi = (log(k−1) k)
1/2λi;

11: θnew = APLE(gi, xj , λi);
12: if F itness(θnew) > ǫf then

13: Add xj into gi;
14: end if

15: end for

16: for each gi in g do

17: for each gj in g (j 6= i) do
18: if |gi ∩ gj |/|gi| > ǫo or |gi ∩ gj |/|gj| > ǫo then

19: Combine gj into gi;
20: end if
21: end for

22: end for

23: K = |g|;
24: until Each subgraph stays unchangeable
25: Output g;

Algorithm Explanation: Without loss of generality, S can be se-
lected randomly as long as the seeds in S are disjoint with each
other. Lines 3–5 initialize the tuning parameter λ0 for each seed.
Lines 7–15 give one step expansion for each subgraph. We expand
all the subgraphs together, which can achieve a balance for the size
of each subgraph. Lines 16–22 check if two subgraphs should be
combined.

Complexity Analysis: Assume that the final average subgraph size
is R, lines 7–15 can be computed in O(K · L(R)) time. Lines
16–22 take at most O(K2p) time with auxiliary O(p) space. The
number of iteration of line 6 reaches p at most. Thus our CGSE al-
gorithm takes O(K2p2+Kp ·L(R)) time in the worst case. Where

L(R) is the complexity of ℓ1 regularization method in [16], which
is logarithmic complexity with R [16].

5. EXPERIMENTAL STUDY
We evaluate the proposed overlapping decomposition of graph-

ical model (ODGM). We compare with the single graphical mod-
el(SGM), which is solved by the graphical lasso [4]. To further
study the advantage of the overlapping decomposition, we adapt
the proposed CGSE algorithm to support the non-overlapping de-
composition of graphical model (NODGM) by setting γ = +∞ in
Equation 9 to forbid overlaps.

We report results on synthetic datasets in Section 5.1. In Sec-
tion 5.2, we report the performance study on real-life traffic dataset,
and show the usefulness of the results for traffic analysis.

5.1 Synthetic Data

5.1.1 Setting

Since we focus on graphical models of a relatively large scale,
we generate a set of networks whose number of nodes, p, ranges
from 100 to 900. Note that previous work normally uses network-
s containing tens of nodes. We set the number of observations
n = 800. We follow the approach [6] to generate the synthetic
data. To simulate the heterogeneity in large networks, we gener-
ate local centered network by K local Erdös-Rényi random graphs
{g1, g2, ..., gK}, gi = (SVi, SEi); for homogeneity we add edges
between any gi and gj randomly. Specifically,
1. We generate K Erdös-Rényi graphs, each with a random size in
[20, 80], such that

∑K
i |SVi| = p. Let Ecross be the set of cross

links between the K graphs, and let Einner =
⋃K

i SEi be the
set of total inner links. Let ρ = |Ecross|/|Einner | be a factor to
control the homogeneity. We randomly add ρ|Einner | cross edges.

Finally, we can get a network G = (V,E), where V =
⋃K

i SVi

and E = Einner

⋃
Ecross.

2. Based on the above network, we create a covariance matrix fol-
lowing [13]. Define a p× p matrix A as

Aij =






1, i = j

U([−1,−0.5] ∪ [0.5, 1]), (i, j) ∈ E

0, Else

where U(·) represents uniform distribution. We scale the diagonal
elements to ensure positive definiteness and average the matrix with
its transpose to get a symmetric A. Then the covariance matrix Σ
is calculated as

Σij = (A−1)ij/
√

(A−1)ii(A−1)jj

3. We generate p dimensional samples from N(0,Σ).
We define Precision, Recall and F1-score to measure the effec-

tiveness of different models in finding the causal relationships. Note
that the true causal relationships in E are known in the generated

data. Given an estimated Ê returned by a method, we define these
metrics as follows.

Pre =
|{(i, j) : (i, j) ∈ E, (i, j) ∈ Ê}|

|{(i, j) : (i, j) ∈ Ê}|

Rec =
|{(i, j) : (i, j) ∈ E, (i, j) ∈ Ê}|

|{(i, j) : (i, j) ∈ E}|

F1 =
2 · Pre · Rec

Pre+Rec
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Moreover, we set the fitness threshold ǫf = 0.1, combination
threshold ǫo = 0.6, γ = 0.1 and λ0 = 0.2. We set the number
of seeds at |S| = K and each Si is selected randomly from the K
Erdös-Rényi graphs with size |Si| = 3.

5.1.2 Results

Varying p To evaluate these methods on networks of various sizes,
we vary p from 100 to 900. We set ρ = 0.3. The performances of
all the methods are shown in Figure 1. We can see that when p is
small, SGM performs as well as ODGM, because a single graphi-
cal model can work well. However, as p increases, the accuracy of
SGM falls dramatically. As explained in Section 4.2, such a large
p makes it infeasible to derive a single graphical model from n ob-
servations. However, both decomposition methods still work well
with the increase of p. ODGM achieves a high accuracy and out-
performs NODGM consistently, because non-overlapping decom-
position cannot capture the overlap information.
Varying ρ The parameter ρ plays an important role on controlling
the homogeneity of the network. When ρ = 0, it means the net-
work is essentially heterogeneous and is actually composed of sev-
eral separate sub-networks, while a large ρ indicates that the edges
in the network tend to distribute homogeneously. Figure 2 shows
the F1-score of ODGM and NODGM while ρ is varied, where we
set p = 500. As expected, when ρ approaches zero, NODGM
performs as well as ODGM because the network can be divided
completely into sub-networks. But as ρ increases, the disparity
between ODGM and NODGM becomes larger since ODGM can
discover the overlaps while NODGM losses more information.

We do not report the results for varying the parameters ǫf , ǫo
and γ due to space limitation. Instead, we will study and visualize
the effect of these parameters on a real-life traffic network in an
intuitive way in the next section.

Figure 1: F1-score with p varying.

Figure 2: F1-score with ρ varying.

5.2 Traffic Data

5.2.1 Description and setting

We evaluate our methods on real-life traffic data. The features in
this traffic dataset are observations collected from sensors located

(a) (b) (c)

Figure 3: (a)Real traffic network; (b)the non-overlapping decom-

position structure(NODGM); (c)the overlapping decomposition struc-

ture(ODGM).

on ramps in a highway traffic network. Each observation is the
vehicle count during a time interval. Figure 3(a) gives the structure
of the highway traffic network from a province in China, in which
each circle represents a traffic station consisting of an on-ramp and
an off-ramp, and the line between any connected traffic stations is
the bidirectional highway. There is an important ring in the network
which is amplified on the right hand—the city in the center of this
ring is a big city and plays a central role in the entire traffic network.

There are total 180 traffic stations(circles), which correspond to
360 ramps, i.e., p = 360. The observations are collected at time in-
terval 9:00-9:15 AM from 2011/1/1 to 2011/2/28 (59 days). There-
fore, n = 59 for each feature. Due to the stability and periodicity of
traffic behaviors, the observations follow a Gaussian distribution.

We set ǫf = 0.1, ǫo = 0.6, γ = 0.1 and λ0 = 50. We set the
number of seeds |S| = 12, and each |Si| = 6.

Because there is no ground truth for causality matrix in real traf-
fic data, F1-score cannot be measured. Nevertheless, the causal
information detected is the most important for traffic research, and
our domain experts can help with their knowledge on the causal
relationship in the traffic network we use. Next, we compare the
results returned from the different methods and discuss how the
parameters in CGSE influence the causality structures.

5.2.2 Results and Analysis

Figure 3(b) and Figure 3(c) give the subgraph structures returned
by NODGM and ODGM, respectively. For clear representation, we
draw the results based on the initial traffic network with 180 traffic
stations instead of 360 features, and a subgraph contains a traffic
station node iff at least one feature (ramp) of this traffic station
belongs to it. In the figures, the ellipses with the same label denote a
subgraph. Since non-overlapping subgraphs have no intersections,
the subgraphs cannot be combined together, and thus the number of
final subgraphs equals to the number of seeds in Figure 3(b). For
overlapping structure, when two subgraphs overlap at a certain rate
ǫo, they are combined together. Thus, we end up with 8 subgraphs
in Figure 3(c).

From the two figures, we observe: (1)Both NODGM and ODG-
M show that the causalities between vehicle flows follow the spa-
tial distribution in general— the nearer are two features spatially
in traffic network, the more correlated they tend to be; (2)ODG-
M highlights some crucial traffic nodes with highly overlaps, such
as the nodes on the central ring. As mentioned earlier, the central
ring is around the central city and plays an important role in the the
entire traffic network. Additionally, traffic station C on the ring is
the passageway connecting the unique airport of the entire network;
and traffic stations A and B are the top 2 highest vehicle flow traffic
stations on both on-ramp and off-ramp. These domain information
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Figure 4: Detail causalities among the selected features: (a), (b) and (c) are causalities by SGM, NODGM and ODGM under local concentrated

features; (d), (e) and (f) are causalities by SGM, NODGM and ODGM under scattered features.

matches well with our ODGM result and gives an reasonable ex-
planation. (3)ODGM is able to detect long distance causalities in
addition to the local causalities within distances. For example, the
components(ellipses) of subgraph 1, 3, 4 and 5 are distributed s-
patially, but they are highly correlated within the vehicle flow. In
other words, there also exists long distance origin-destination de-
mand in the traffic network. However, NODGM cannot mine such
information described in both (2) and (3). (4) The sparsely located
traffic stations are not included in any subgraphs in both the figures.
We find that the vehicle flows in most of these traffic station ramps
are nearly 0 during the observation periods, and almost 80% of the
ramps and their located highways are newly built. Thus they are
seldom used and have no causal relationship with other ramps.

Figure 4 gives the detailed causalities among a set of selected
features. For each selected traffic station i, i1 and i2 denote the
on-ramp and off-ramp features, respectively. In Figures 4(a), 4(b)
and 4(c), the features are selected from traffic station L-W in Fig-
ure 3(a), and these traffic stations are selected locally concentrated.
We can see that SGM detects fewer causal information than do N-
ODGM and ODGM because a single graphical model treats the
entire network globally, and can only detect the causalities from
a global view. In this setting, NODGM detects more causal rela-
tionships than do ODGM, which also demonstrates that NODGM
focuses more on a local view while ODGM is a nice compromise
of SGM and NODGM.

While Figures 4(d), 4(e) and 4(f) provide the detailed causal-
ities among the features selected from A, C-K, O and S, which
are scattered in the network. As can be observed from the results,
ODGM discovers more meaningful causal information than do S-
GM and NODGM, e.g., the causalities among {E1, E2, F1, F2,
G1, G2}. Both ODGM and SGM are able to discover the impor-
tant long distance causalities for the key traffic station A and C.
However, NODGM is restrained by its non-overlapping structure
and only detects the inner relationship within subgraphs, even if A
and C are highly correlated with others.

These results obtained by ODGM are essentially important for
the analysis of traffic systems for the following reasons. First,
the traffic stations in the same subgraph are highly correlated and
should be considered together by traffic systems. For example, it
is possible that vehicle flows rush into each other within the same
subgraph. Second, the causalities are very helpful for traffic flow
prediction and anomaly detection which are hot concerns of traffic
operators and managers. Third, it is important to find the highly
overlapped traffic stations. These crucial traffic stations are corre-
lated with a number of regions, based on which the regions with
heavy traffic can be detected. On the other hand, the regions with
light traffic can also be reflected by independent traffic stations.
These information can be used by highway construction planners
to design new roads.

5.2.3 Varying parameters

We study the effect of parameters γ, ǫf , ǫo and λ0 for CGSE.
Figure 5 shows the decomposition results of varying parameters.
When varying each parameter, we use the aforementioned default
values for the other parameters.

Parameter ǫf controls the minimum fitness, and restricts the size
of each subgraph. As shown in Figure 5(a), when ǫf decreases,
more features are added into subgraphs and the size of each sub-
graph becomes larger. Figure 5(b) shows the effect of ǫo. When ǫo
is reduced, the subgraphs are more likely to be combined together
under ǫo. Figure 5(c) shows the effect of γ, which controls over-
laps, on the number of features with different overlap degrees. We
observe that when γ increases, fewer overlaps exist in the decom-
position structure, thus the number of overlapped features.

Figure 6 visualizes the generated subgraphs for selected param-
eter values to show the details. From these figures, we can see that
the property of each parameters is in line with the results in Fig-
ure 5, and these figures give a more intuitive and understandable
description for our method.

Due to space limitation and as λ0 works similarly as ǫf , we do
not give the results of varying λ0, which controls the sparsity of the
causalities in the penalize estimation problem in Equation 3. When
λ0 increases with ǫf fixed, the constraint on the sparsity becomes
tighter and fewer causalities are detected, and thus smaller sub-
graphs generated. Conversely, when λ0 decreases, more causalities
will be discovered and the size of each subgraph will increase.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose an overlapping decomposition tech-

nique for large scale graphical models. The techniques enables the
penalized log-likelihood in Gaussian Graphical Model to satisfy an
additive expanding property. We demonstrate its asymptotic stabil-
ity. Based on this property, we develop a constraint greedy sub-
graph expansion algorithm to generate overlapped subgraphs. We
demonstrate on both synthetic data and real-life traffic data that the
overlapping decomposition method is more powerful than the sin-
gle graphical model and its non-overlapping decomposition coun-
terpart. In the application of traffic data analysis, the meaningful
results show that our model can provide rich information for traffic
analysis.

For future work, it is interesting to extend the static overlapping
decomposition technique to deal with time-varying observations so
that we can follow the evolvement of the causalities in a network.
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(a) (b) (c)

Figure 5: (a)relationship among average subgraph size, the number of subgraphs and ǫf ; (b) relationship between the number of subgraphs and

ǫo; (c)relationship between overlap degree and γ.

(a) ǫf = 0.05 (b) ǫf = 0.2 (c) ǫo = 0.8 (d) ǫo = 0.4 (e) γ = 0.5 (f) γ = 2

Figure 6: Decomposition structures when varying each parameter while keeps others stable. Default setting: ǫf = 0.1, ǫo = 0.6 and γ = 0.1.
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